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Abstract- The free-surface behavior of a viscous liquid layer flowing down an inclined plane by gravity and in- 
teracting with an overlying uniform electrostatic field is examined in the limit of long-wave approximation. Both linear 
and nonlinear stability analyses are performed to address two-dimensional surface-wave evolution initiating from a flat in- 
terface. The growth of a periodic disturbance is first investigated for a linear analysis, and then to examine the nonlinear 
surface-wave instabilities the evolution equation for film height is solved numerically by a Fourier-spectral method. For 
small evolution time the calculated nonlinear modes of instability are consistent with the results obtained from the linear 
theory. The effect of an electrostatic field increases the wavenumbers showing a maximum linear growth rate as well as a 
cutoff. A significant phenomenon as Reynolds number is increasing is the appearance of the catastrophic surface waves 
in the long run whenever any initial wavenumber making a traveling wave linearly unstable is employed into the initial 
simple-harmonic disturbance. 
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INTRODUC~ON 

The behavior of the thin liquid-film flow has attracted much 
attention for many years because the thin layer of liquid acts 
an important role in many engineering processes due to its 
high transfer surface of heat and mass in comparison with the 
volume of through-flow. If the flowing layer is electrically con- 
ductive and is being affected by an electrostatic field applied 
via a suspending charged foil, the film becomes more unstable 
than that in a free-charged case because the pulling-over force 
induced by an electrostatic field acts as a destabilizing effect. 
The main application of this film flow comes from the new 
idea for the design of an electrostatic liquid film radiator (ELFR) 
rejecting heat in space [Kim et al., 1992, 1994]. In ELFR the 
elctrostatic field acts as an external attracting force to prevent 
leakage of the liquid-metal coolant through a puncture made by 
an unexpected accident such as a collision with a space debris 
or a micrometeorite. This new technique was proposed as a 
substitute for the present-day space radiator, which employs 
rather heavy armored heat pipes. 

As a thin liquid layer drains under gravity down an inclined 
plane, it is susceptible to long surface-wave instabilities. The 
stability theories of thin film flows over an inclined plane un- 
der the action of gravity were first investigated by Benjamin 
[1957] and Yih [1963]. They identified regimes of linear sta- 
bility as a function of the Reynolds number and the angle of in- 
clination. The exponentially growing wave develops into the al- 
most sinusoidal permanent traveling wave with small but equi- 
librium amplitude around the cutoff wavenumber. The study on 
the nonlinear stabilities was then extended by several authors 
[Benny, 1966; Gjevik, 1970; Lin, 1974; Tougou, 1981]. Lin 
[1974] performed a weakly nonlinear analysis near the critical 

Reynolds number and found a transition point separating su- 
percritical from subcritical bifurcation. A supercritically stable 
wave is expected to be equilibrated into a single wave with a 
few lowest excited harmonics of its initial fundamental wave 
due to the nonlinear modal interaction. The result of their ex- 
aminations is a nonlinear evolution equation for the layer thick- 
ness as a function of time. The analysis of a thin liquid layer 
has been extended to take into account the effect of an elec- 
trostatic field, and the basic question of how the thin liquid lay- 
er flowing down an inclined plane and an electrostatic field in- 
teract was answered by Kim et al. [1992]. 

The aim of the present work is to address the questions con- 
cerning the instabilities of the film flow affected by an electric 
field in the limit of long-wave approximation. For this purpose 
a strongly nonlinear evolution equation representing the film 
height is used for two-dimensional disturbances. From this 
equation the linear stability analysis is performed about the uni- 
form film layer, and the nonlinear behavior of disturbances is 
investigated by a numerical computation using a Fourier-spec- 
tral method. And it will be shown that the initial disturbance 
modes in the nonlinear calculation are consistent with those ob- 
tained from the linear stability theory. The free-surface shapes 
and the Fourier-spectral coefficients are computed as time el- 
apses. The electrostatic field (the strength is I KV/cm) is as- 
sumed to be uniformly distributed along the charged plate whose 
scale is also equal to the inclined plane (see Fig. 1). 

The following sections are composed of formulation, linear 
stability analysis, nonlinear film evolution and conclusions. In 
the Sec. of formulation, the flow configuration and the govern- 
ing system of equations in both of vacuum and liquid spaces 
are explained. Linear stability analysis for the transient, spa- 
tially uniform and basic state is performed, and the neutral and 
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Fig. 1. The physical configuration of the plane flow under an 
electrostatic field. 

the maximum growth rates are obtained in the Sec. of linear 
stability analysis. The various nonlinear instabilities for the two 
cases of Reynolds numbers are calculated in the Sec. of non- 
linear film evolution and in the final Sec. the results are con- 
cluded. 

FORMULATION 

The layer is assumed incompressible, viscous and forms a 
thin liquid film flowing down an inclined plane under gravity g. 
Two-dimensional case is only considered and the plane is mak- 
ing an angle [i with the horizontal. The coordinate system is 
chosen such that the x axis is parallel to the plane and the y 
axis is perpendicular to it. Above the liquid film there is a vac- 
uum, where at a distance H from the plane is a charged plate 
of length L (see Fig. 1). Suppose that d is defined as the 
characteristic thickness of the primary film flow, then the fol- 
lowing small parameter ~ denotes the film is very thin, that is, 

~ = ~ < < 1 .  (1) 

If d/H<<l then the charged plate is very far from the plane re- 
lative to the film thickness. Therefore, the electrostatic problem 
can be decoupled from the fluid dynamic problem. 
1. Electric Potential 

The electric potential is determined by solving the Laplace's 
equation, 

v 2 r = 0, (2) 

for the electric potential ~(x, y) in the fluid, ~, and for that in 
the vacuum region, ~. The fluid region is defined by 0~<y_<h 
(x, t) and - m<x<oo, where y=h(x, t) is the height of the film 
above the inclined plane, and the vacuum region is defined by 
the strip -oo<x<oo and h(x, t)_<y_<_H. To solve the Eq. (2) 
the following boundary conditions are needed: 

r H)=FH*(x),  for y=H, 
$=0, for y=O. (3) 

The function ~(x) is a given dimensionless function of x, F de- 
notes the unit of an electric strength and the product FH is a 
constant with the unit of electric potential. Along y=h(x, t) 
there are two more boundary conditions: 
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a~r a~, v (4) 
r (x, h, t) = t) (x,h,t), g f - ~ n  =& an 

Here EI is the dielectric constant of the fluid, e, is that of the 
vacuum, and the partial derivative is taken in the direction of 
the outward unit normal, n, to the interface. Unless no con- 
fusion can occur the subscript or superscript f is used for the 
quantities in the fluid region and v for the quantities in the vac- 
uum region. Setting H'=H/d as a dimensionless foil height and 
~=H/L, the dimensionless electric field vector can be written as 

with the normal component defined as E,=F.-n and the tangen- 
tial component as E,--E-x, where x is the unit tangent to the in- 
terface. The free-surface is unknown, so that the solution is cou- 
pled to the dynamics of the layer. In addition, to examine the 
interaction effect between the fluid media and an applied elec- 
trostatic field we have to consider the stress tensor ~0 generated 
by the given electric field E [Landau et al., 1984], 

�9 1 ~q = -  P0(P, 'r)~/j - t~n g-P ~-p z ~ij 4 4/r ' (6) 

where p0(p, T) is the pressure which would be found in the 
medium in the absence of a field and for given values of den- 
sity p and the temperature T. The 8,, stands for the Kronecker 
delta, ff the medium is moving, then an additional deformation 
tensor due to the viscous effect will be included in (6). Thus 
an electric property, i.e., the permittivity e of the medium af- 
fects the stability of the flow system. However, here the fluid 
will be treated as an incompressible conductor at an isothermal 
condition. Therefore the electric properity will not affect the 
thin film flow. Generally as the property e has small values 
such as in dielectrics, the effect of the stress becomes weak. 
2. Equations of  Fluid Motion 

The liquid layer is governed by the Navier-Stokes equations. 
Letting d be the unit of length in the y direction, L the unit of 
length in the x direction, U0 the unit of velocity in the x, direc- 
tion, ~U0 the unit of velocity in the y direction, LAJ0 the unit of 
time, pUo 2 the unit of pressure, p the fluid density, & the unit 
of the dielectric constant, and It the fluid viscosity, the di- 
mensionless governing equations of motion become 

U x +Vy = 0 ,  (7) 

~(u, +uux +vu,)=-~p.  + 1  (~u,~ +u.)+ sin/~ 
Re Ft a , (8) 

uv, + ~vvy) = -  py + ~ (~2v= + v r / ) -  cost  (9) (v, + 
Fr 2 

Here u and v are the velocity components of x and y directions, 
respectively, and p is the pressure. The subscripts represent the 
partial derivatives. The dimensionless groups Re and Fr are in- 
troduced for the Reynolds number and the Froude number, and 
defined as 

pUo d 
Re = - - ,  (10) 
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U0 
F r = ~ .  (11) 

There are two kinds of boundary conditions, i.e., one is on the 
solid wall and the others are on the free surface. The no-slip 
boundary condition at y=0 is given by 

u=v=0.  (12) 

On the free surface y=h(x, t), the kinematic condition is 

hr +uh~ =v (13) 

and the continuity of the tangential and normal stresses [Landau 
et al., 1984] are, respectively, 

(1 - ~2h.~2.) (uy + ~ v y )  + 2~2hx(vy - u x )  = O, (14 )  

C---a ( l+~h~)  3~ ~ p + K  - 1  (E~'2+efE; 2) 

+ ~{~2h2ux - lax (u r + ~2v x) + vy } (1 + ~2h2)-1, (15) 

where the capillary number Ca to take into account the. surface 
tension t5 and the dimensionless constant K are defined as 

Ca = 2pUo/a, 
K = &. dF2/16zrpUo . (16) 

The pressure in the vacuum is set to zero. 

LINEAR STABILITY ANALYSIS 

First, assuming the Reynolds number is order unity, the evo- 
lution equation for h(x, t) accurate to O(~ 2) can be determined 
in the thin film limit. The characteristic unit of velocity is de- 
fined as equal to the mean velocity of the basic plane flow 
down in the inclined plane, i.e., Uo=pgd z sinl~/3~. Keeping 
terms upto the order ~ in (7)-(15) and using asymptotic ex- 
pansions of the dependent variables for small ~, the velocity 
components u and v on the free surface are determined 

~2 h +KOEo2 ] u ( t ' x ' h ) = 3 h 2 + ~  Reh3hx-3h2 ~ cotfl+ Ca ~ '  0x ) 

h2+0(~2), (17) 

v(t, x, h ) = - 3 h 2 h x - ~ [ R e  ha (6h~  +--~-hx 2) 

[ 2  X2~2 0E v2 
'~ ~0n - On h l 

+K --~-x2n+~f--x,X] hZ+ 0(~),  (18) 

where ~2/Ca=O(1) and 

E0. = H*45(x) {1 +(y-H*)[h(1/e l - 1)+H*]-1} 

on y=h(x, 0, (19) 

and finally substituting (17) and (18) into the kinematic con- 
dition (13) the evolution equation for the first two orders in ~ 

is obtained such as 

ht+3h2hx+~---~(6Reh6hx-h3hxcotfl+2 ~-~ah3h,~ I 

3r~V ( ~r:v2 ~2EV 
":th ~v t't~0,~ +h | 'L~n +E v ~' on . . . . .  0,,--~x [ ~ - x  ~176 =0. (20) 

Next, to perform a linear stability analysis the Eq. (20) is per- 
turbed about its steady-state solution, i.e., h(x, t)=l+h,(x, t) 
with assuming ~(x)=l.  The small disturbance h, is assumed to 
have a simple harmonic form, i.e., hl=exp{itx(x- cO}, where 
ct_>_0 is the wavenumber of the disturbance and c is the com- 
plex wave speed, i.e., c=c,+ic,. 

After h~ is put into (20), it yields the critical Reynolds num- 
ber 

R e c : ~  ~ a - 9 -  V 

where 

tzl-I*Z(1/ef - 1) {tanh[a(H* - 1)] + tanh ct l-1- (22) 
W= ( H ' + l / e f - 1 )  2 , ef j 

When surface tension and electrostatic field are neglected, Eq. 
(21) has the same condition for the neutral stability obtained by 
Benjamin [1957] and Yih [1963]. 

In addition, the maximum growth rate showing the max- 
imum rate of amplification of surface-wave disturbance is also 
attained in (or, Re) domain after plugging hl=exp{itx(x- ct)} 
into Eq. (20) and computing d(otC,)/dct=0, i.e., 

R e = 5 c ~  1 C a  9 l / 2  - ~ /  -~-/- 1 W + a  . (23) 

The cutoff wavenumber 0~ from (21) and maximum-growth- 
rate wavenumber t~m from (23) are plotted corresponding to Re 
in Fig. 2 for both F=I KV/cm (dashed line) and F=0 KV/cm 
(solid line), H*=13.3, ~=30 ~ g=l cm/sec 2 and with the physical 
parameters for lithium at 700 K (11=0.0038 p, c=363.2 dyn/cm 
and p=0.493 g / c m 3 ) .  L a t e r  the wavenumbers within the un- 
stable region at Re=9.5 (d=0.15 cm) will be used for the non- 
linear computations of the surface-wave evolution to confirm 
whether the expectation from this linear stability analysis is 
true or not. The effect of an electrostatic field increases both 
wavenumbers showing a maximum linear growth rate and a cut- 
off at a given Reynolds number. When the effect of electro- 
static field is ignored, (21) and (23) yield the same results ob- 
tained by Gjevik [1970]. 

N O N L I N E A R  FILM E V O L U T I O N  

The linear analysis in the previous section is only valid as 
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Fig. 2. L inear stability curves in the (a, Re)-plane for 1~=30 ~ H= 
2 cm, K=1.44 and Ca=l.02 • 10 -~. 

long as the disturbed amplitudes are maintained as small as pos- 
sible. Thus to see the nonlinear evolution of surface wave ,  Eq. 
(20) has to be solved numerically. In an analytical point of 
view the nonlinear equation has been examined by Gjevik [1970], 
Lin [1974] and Tougou [1981] to name only a few. Gjevik 
[1970] and Tougou [1981] took into account waves having the 
initial wavenumbers close to the cutoff a=(~ and analyzed by 
taking the fundamental mode and its lowest harmonics. Lin 
[1974] performed a weakly nonlinear analysis near the critical 
Reynolds number and found a transition point a, (around o~/2) 
separating (a, Re)-plane into supercritical (a>as) and sub- 
critical ((~<(xs). When a>o~, the capillary force is dominating and 
the flow becomes stable, i.e., supercritically stable. If a is near 
a,, the equilibrated wave has a form similar to a single wave 
observed by Kapitza and Kapitza [1949] and studied analyt- 
ically by Pumir et al. [1983]. When a<a, the flow is not 
equilibrium because the harmonics with higher frequency are 
largely excited under nonlinear modal interactions. 

In the laterally unbounded domain the evolution Eq. (20) be- 
comes an initial value problem, where the initial wave is im- 
parted as a sinusoidal disturbance imposed on the fiat interface: 

h(x, 0)= 1 - h  cos (r (24) 

where h is set 0.1. This makes the computational domain per- 
iodic and the Fourier-spectral method [Gottlieb and Orszag, 1977] 
is helpful to solve the evolution equation numerically. The film 
height h(x, t) is calculated by a finite Fourier series 

n = N  

h(x, t)= ~] a,(t) exp{ianx}+c.c (25) 
n = - N  

with N_>64. The c.c means the complex conjugate. The com- 
putational domain is set to the range, -n/o~_<x_<rc/(x. The time 
marching of the solution is performed by virtue of a fourth-or- 
der modified Hamming's predictor-corrector method with the 
maximum tolerance of 10 " using the fourth-order Runge-Kut- 
ta method. At each time step the spectral coefficient a,(t) is 
computed for monitoring the surface deformation. To eliminate 
the aliasing data errors, that is, poor representations of the true 
function because the space step Ax is too large, a large number 
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Fig. 3. Surface-wave instability for a=0.64, Re=9.5, K=1.44 and 
Ca=l.02 x 10 s. 
(a) free-surface configurations for 0_<t_<3 with At=0.1, 
(b) free-surface configurations for 49_< t_< 50 with At=0.1, 
(c) evolution of Fourier-spectral coefficients. 

of collocation points are taken and the upper half of the Fouri- 
er modes are discarded. The evolution of interface has been 
computed with several starting wavenumbers, i.e., from around 
the neutral stability to instability, obtained by the linear sta- 
bility analysis by setting ~=0.02 to meet the assumed long- 
wave approximation. The Eq. (20) is now solved for Re=9.5, 
K=l.44(F=l KV/cm) and Ca=l.02• 10 5. In this case o~=0.65 
and a,=0.46. Fig. 3 shows the surface-wave instability with the 
imparting disturbance wavenumber a=0.64 in the vicinity of 
the cutoff. It is suggested that the surface deformation be linear- 
ly unstable because this wavenumber (slightly smaller than the 
cutoff) is located in the unstable region as seen in Fig. 2. In 
Fig. 3(a) the disturbance grows linearly for small time but soon 
it reaches a maximum value and then decays with the growth 
of the lowest harmonics (n=+2). The harmonics distort the in- 
itial sinusoidal shape as time elapses and the magnitude of the 
surface wave decreases monotonically after the maximum with 
the wave front steepening and the wave rear stretching as 
shown in Fig. 3(b). The free surfaces are plotted at every t=0.1. 
In Fig. 3(c), the magnitudes of the fundamental and lower har- 
monics (n=_+2) are plotted. The modes higher than n=•  are 
so small that they are not computed. 

In Fig. 4 the free-surface deformations are plotted with a=cx,,. 
Fig. 4(a), 4(b) and 4(c) show the free-surface evolutions for in- 
itial growth, intermediate decay and equilibration, respectively. 
Each line is calculated at every time increment of 0.1. As we 
can infer from the linear stability theory the initial wave growth 
is much more obvious than that in the previous case. In the in- 
termediate evolution the decay rates of the excited harmonics 
distort the free-surface waves prominently as shown in Fig. 
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(a) free-surface configurations for 0<t_<4 with At=0.1, 
(b) free-surface configurations for lO_<t_< 14 with At=0.1, 
(c) free-surface configurations for 96_< t_< 99 with At=0.1, 
(d) evolution of Fourier-spectral coefficients. 

4(b). In the equilibration stage shown in Fig. 4(c) the wave has 
a permanent form with the dimples generated due to harmonics. 
The spectral coefficients are plotted in Fig. 4(d) and the limit- 
ing values are equilibrated with larger magnitudes compared to 
the previous ones. Therefore from these modes it can be deduc- 
ed the eventual wave is slightly distorted but permanently per- 
iodic. The modes higher than ~ 3  are very small. 

Fig. 5 shows how the supercritically stable surface waves are 
transformed from an initial wave-flow state with a decreased 
wavenumber. The initial disturbance wavenumber is smaller 
than t~ but a little larger than ct,(=0.325), i.e., t~=0.365, where 
more significant contributions of the harmonics are expected. 
The initial growth and the subsequent decay of the free surface 
are similar to the previous case except that the fundamental 
modes and the second higher modes are met each other around 
t=25 and the modes are not monotonically converging to limit 
values. The intermediate free-surface configurations are plotted 
in Fig. 5(a). As time marches the modes are interacting with 
each other and rearrange their magnitudes to have a permanent 
wave as shown in Fig. 5(b) and this resembles the single wave 
computed by Pumir et al. [1983], that is, the permanent wave 
with reduced smaller wavelength is evolved through nonlinear 
modal self-interaction of a monochromatic wave disturbance im- 
parted initially under the electrostatic field. The modes are cal- 
culated upto n=_4_-4 as shown in Fig. 5(c). 

Fig. 6 shows the surface-wave instability for tz=0.33, which 
is very close to c~,. According to the weakly nonlinear analysis 
this flow system becomes equilibrium as in the previous case 
although the evolution modes area little different. Fig. 6(a-c) 
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Fig. 5. Surface-wave  instabil ity for o~--0.365, Re=9.5 ,  K = L 4 4  
and C a = l . 0 2  • 1 0  s. 
(a) free-surface configurations for 2 2 < t _ < 2 5  with At=0.1, 
(b) free-surface configurations for 152_<t_< 155 with At=0.1, 
(c) evolution of  Fourier-spectral coefficients. 
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Fig.  6. Surface -wave  instabil i ty for  a=0 .33 ,  Re=9.5 ,  K=1 .44  and 
C a = l . 0 2  • 10 -s. 
(a) free-surface configurations for 25_<t_<28 with At=0.1, 
(b) free-surface configurations for 7 6 _ < t < 7 9  with At=0.1, 
(c) free-surface configurations for 263_< t_< 264  with At=0.1, 
(d) evolution o f  Fourier-spectral coefficients. 

shows the flee-surface shapes for time step of 0.1, while Fig. 
6(d) represents the evolution of the first four spectral coef- 
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ficients. Fig. 6(a) shows the crests of the surface waves decay 
due to the lost of energy while the dimples are significantly 
growing. This fact can be explained from the evolution of Fouri- 
er-spectral modes, i.e., as seen in Fig. 6(d) the fundamental 
modes are decreasing more rapidly than the modes n=_+2 in 
the computational time range used in Fig. 6(a), t=25-t=28. In 
Fig. 6(b) the fundamental modes recapture the energy and dom- 
inate again, while the lower harmonics are still decaying. 
Hence we can see the crests are growing while the dimples are 
disappearing. After the initial crests grow and decay several 
more times with the harmonics undulating, the free surface be- 
comes permanent as shown in Fig. 6(c). 

In Fig. 7, the surface-wave instability has been calculated at 
At=0.1 with the initial disturbance wavenumber ~=0.2. In the 
initial stage of instability the amplitude of the disturbance in- 
creases exponentially according to the linear stability theory, but 
soon grows super-exponentially as in Fig. 7(a). The rapid evolu- 
tion and growth of the harmonics excited from earlier stage- 
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Fig. 7. SmTaee-wave ~ b H i t y  for a--0.2, Re;9.5, N=1.44 and 
Ca=l.02 x 10 s. 
(a) free-surface configurations for 0_<t_<9 with At=0.1, 
(b) free-surface configurations for 10_<t_< 18 with At=0.1, 
(c) free-surface configurations for 40 _< t_< 45 with At=0.1, 
(d) free-surface configurations for 193 __< t_< 194- with At=0.1, 
(e) evolution of Fourier-spectral coefficients. 

make the wave fronts steeper and the rears stretching. This 
phenomena makes dimples later as in Fig. 7(b), where as dim- 
pies appear on the longer rears the amplitude of free surface 
gets smaller after reaching a maximum. As time elapses this 
surface-wave deformation gets more significant. Therefore, as 
this process develops the flow system has growing dimples 
while the initial crests are decaying continuously, as shown in 
Fig. 7(e). Fig. 7(d) shows for sufficiently large time the initial 
crests and the generated dimples have almost equal values in 
the magnitudes of fee-surface waves. The competition between 
the fundamental and the harmonics continues through the non- 
linear modal self-interaction. Fig. 7(e) represents the evolution 
of Fourier-spectral coefficients upto n=_+5. The higher modes 
excited initially become important and controlthe flow system 
far away from the bifurcation point. 

At sufficiently large Re catastrophic surface waves have been 
observed by Pumir et al. [1983]. Thus to confirm this behavior 
in the f'dm flow under an electrostatic field, the characteristic 
film height d has been further increased to 0.2 cm while the 
other parameters are kept as the same values in the previous 
computations. In this case the newly calculated values of the di- 
mensionless groups are Re=22.44, K=l.08 and Ca=l.81 • 10 5 
which yield the cutoff wavenumber a~=l.4 and the wavenumb- 
er at the maximum growth rate a ,=l .0 .  As an example case 
the nonlinear computations are performed at (x=0.68, where the 
flow system will be unstable. Fig. 8 shows the surface-wave 
instability of this film flow. Fig. 8(a), 8Co) and 8(c) represent 
the evolution of free-surface shapes for initial, intermediate 
growth and wavebreaking, respectively. Each line stands for 
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Fig. 8. Surface-wave instability for a=0.68, Re=22.44, K=l .08 
and Ca=l.81 x 10 -5. 
(a) free-surface configurations for 0_<t_<2.6 with At--0.04, 
(b) free-surface configurations for 3.6~<t_<5 with At--0.04, 
(c) free-surface configurations for 6.4< t_< 7.44 with At=0.04, 
(d) evolution of Fourier-spectral coefficients. 
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the time increment of 0.04. Fig. 8(d) shows the evolution of 
the first five Fourier-spectral coefficients. In Fig. 8(a), the am- 
plitude of the disturbance grows super-exponentially due to the 
higher harmonics excited in the initial stage. The rapid evo- 
lution of the free-surface configuration makes the wave fronts 
steeper and generate dimples on the rear-wave sites. In Fig. 
8(b), the growth of the dimples is significant because the 
modes n=_+2 gains energy from the fundamental. As the film 
height gets thicker, the local phase speed of the wave is ac- 
celerating. Therefore, the traveling speed of the crests is greater 
than that of the troughs, as shown in Fig. 8(c) where the fun- 
damental recaptures the energy and dominates, resulting in mak- 
ing the wave fronts steeper and steeper. Accordingly the sur- 
face-wave soon breaks and shows a catastrophic behavior. And 
the computation work is terminated at t=7.44. 

The nonlinear film evolution has been calculated with vari- 
ous wavenumbers and the free-surface growth rates are mon- 
itored by the Fourier-spectral coefficients. For small evolution 
time the growth rates are consistent with the results obtained 
from the linear disturbance theory. The differences in the non- 
linear growth rates have been shown in Figs. 3-8, and the grow- 
ing rates of the wave crests are much larger than the thinning 
rates of the troughs which can be anticipated by examining the 
vertical component of the velocity (18) at the interface, that is, 
the driving force mainly depends on powers of the film height 
h and thus has much more influence on the thicker region. The 
effect of an electrostatic force destabilizes the flow system and 
hence it gives larger wavenumbers for both cutoff and max- 
imum growth rate in the linear stability region as shown in Fig. 
2. The film flow without the effect of an electrostatic field has 
been studied by Burelbach et al. [1988] and Joo et al. [1991] 
for the isothermal and the nonisothermal cases. In the non- 
isothermal case the film flow on the heated inclined plane is 
considered in surface-wave and thermocapillary instability. 

CONCLUSIONS 

The evolution equation representing the electrohydrodynamics 
has been used for the linear stability analysis about the uniform 
film layer. Because the applied electrostatic tensile stress tends 
to destabilize the liquid film flow, the instability region in (a, 
Re)-plane is broader compared to the free-charged film flow. 
The nonlinear behavior is investigated in a periodic domain by 
computing the free-surface configuration and the Fourier-spec- 
tral coefficients numerically. For small time the surface-wave 
instability modes are consistent with the results obtained from 
the linear stability theory for a < ~  and Re>Reo When the in- 
itial disturbance wavenumber is within the supercritically stable 
region, i.e., ~xs<~<~ and Re>Re,, we can see the flow system 
finally equilibrates and develops a permanent wave according 
to the convergence of the harmonics. In proportion to the de- 
crease of the wavenumber into the subcritical region the rear- 
ranged surface-wave has no equilibration since the higher har- 
monics are important through the nonlinear modal self-in- 
teraction. If Reynolds number increases owing to the film thick- 
ness, the local phase speed gets higher and hence the wave 
crests travel much faster than the troughs on the wave rears as 
shown in Fig. 8. Accordingly, the wavebreaking phenomena 

has been observed at sufficiently large Reynolds number. 
This study has been performed only based on the two-di- 

mensional disturbance theory. To have access to more physical 
justification the stability behavior needs to be considered for 
three-dimensional disturbance with streamwise and spanwise wave- 
numbers. This kind of question will be addressed in later study. 
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N O M E N C L A T U R E  

Ca : capillary number 
c : complex wave speed 
d : characteristic film thickness [cm] 

: electric field vector 
F : characteristic unit of electric field [KV/cm] 
Fr : Froude number 
g : gravity [cm/sec 2] 
H : distance from plane to charged foil [cm] 
H" : dimensionless foil height 
h : free-surface thickness [cm] 
hi : perturbed dimensionless film thickness 
h : dimensionless initial film disturbance 
K : e,.dFZ/16~tUo 
L : characteristic length scale parallel to plane [cm] 
N : number of modes in Fourier series 
n : unit normal vector to the interface h 
p : pressure [dyne/cmq 
Re : Reynolds number 
T : temperature [K] 
t : time [sec] 
U0 : characteristic unit of velocity in x direction 
u : velocity component of x direction [cm/sec] 
v : velocity component of y direction [cm/sec] 
x : distance coordinate parallel to plane [can] 
y : distance coordinate perpendicular to plane [cm] 

Greek Letters 
a : wavenumber 

: inclination angle of plane with the horizontal 
&, : Kronecker delta 

: dielectric constant 
:H/L 

~t : fluid viscosity 
:d /L  

p : fluid density 
(~ : surface tension 
~,j : stress tensor 

: unit tangent vector to the interface h 
: dimensionless electric potential along y=H 

r : electric potential [KV] 

Superscripts 
f : fluid 
v : vacuum 

Korean J. Ch. E.(Vol. 14, No. 1) 



48 H. Kim 

Subscripts 
c : critical value 
f : fluid 
i : imaginary part 
m : maximum growth rate 
r : real part 
s : supercritical value 
t : partial derivative with t 
v : vacuum 
x : partial derivative with x 
y : partial derivative with y 
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